327 research outputs found

    Mandarin speech perception in combined electric and acoustic stimulation.

    Get PDF
    For deaf individuals with residual low-frequency acoustic hearing, combined use of a cochlear implant (CI) and hearing aid (HA) typically provides better speech understanding than with either device alone. Because of coarse spectral resolution, CIs do not provide fundamental frequency (F0) information that contributes to understanding of tonal languages such as Mandarin Chinese. The HA can provide good representation of F0 and, depending on the range of aided acoustic hearing, first and second formant (F1 and F2) information. In this study, Mandarin tone, vowel, and consonant recognition in quiet and noise was measured in 12 adult Mandarin-speaking bimodal listeners with the CI-only and with the CI+HA. Tone recognition was significantly better with the CI+HA in noise, but not in quiet. Vowel recognition was significantly better with the CI+HA in quiet, but not in noise. There was no significant difference in consonant recognition between the CI-only and the CI+HA in quiet or in noise. There was a wide range in bimodal benefit, with improvements often greater than 20 percentage points in some tests and conditions. The bimodal benefit was compared to CI subjects' HA-aided pure-tone average (PTA) thresholds between 250 and 2000 Hz; subjects were divided into two groups: "better" PTA (<50 dB HL) or "poorer" PTA (>50 dB HL). The bimodal benefit differed significantly between groups only for consonant recognition. The bimodal benefit for tone recognition in quiet was significantly correlated with CI experience, suggesting that bimodal CI users learn to better combine low-frequency spectro-temporal information from acoustic hearing with temporal envelope information from electric hearing. Given the small number of subjects in this study (n = 12), further research with Chinese bimodal listeners may provide more information regarding the contribution of acoustic and electric hearing to tonal language perception

    Effects of noise on integration of acoustic and electric hearing within and across ears.

    Get PDF
    In bimodal listening, cochlear implant (CI) users combine electric hearing (EH) in one ear and acoustic hearing (AH) in the other ear. In electric-acoustic stimulation (EAS), CI users combine EH and AH in the same ear. In quiet, integration of EH and AH has been shown to be better with EAS, but with greater sensitivity to tonotopic mismatch in EH. The goal of the present study was to evaluate how external noise might affect integration of AH and EH within or across ears. Recognition of monosyllabic words was measured for normal-hearing subjects listening to simulations of unimodal (AH or EH alone), EAS, and bimodal listening in quiet and in speech-shaped steady noise (10 dB, 0 dB signal-to-noise ratio). The input/output frequency range for AH was 0.1-0.6 kHz. EH was simulated using an 8-channel noise vocoder. The output frequency range was 1.2-8.0 kHz to simulate a shallow insertion depth. The input frequency range was either matched (1.2-8.0 kHz) or mismatched (0.6-8.0 kHz) to the output frequency range; the mismatched input range maximized the amount of speech information, while the matched input resulted in some speech information loss. In quiet, tonotopic mismatch differently affected EAS and bimodal performance. In noise, EAS and bimodal performance was similarly affected by tonotopic mismatch. The data suggest that tonotopic mismatch may differently affect integration of EH and AH in quiet and in noise

    Gastric aspiration and its role in airway inflammation

    Get PDF
    Gastro-Oesophageal Reflux (GOR) has been associated with chronic airway diseases while the passage of foreign matter into airways and lungs through aspiration has the potential to initiate a wide spectrum of pulmonary disorders. The clinical syndrome resulting from such aspiration will depend both on the quantity and nature of the aspirate as well as the individual host response. Aspiration of gastric fluids may cause damage to airway epithelium, not only because acidity is toxic to bronchial epithelial cells but also due to the effect of digestive enzymes such as pepsin and bile salts. Experimental models have shown that direct instillation of these factors to airways epithelia cause damage with a consequential inflammatory response. The pathophysiology of these responses is gradually being dissected, with better understanding of acute gastric aspiration injury, a major cause of acute lung injury, providing opportunities for therapeutic intervention and potentially, ultimately, improved understanding of the chronic airway response to aspiration. Ultimately, clarification of the inflammatory pathways which are related to micro-aspiration via pepsin and bile acid salts may eventually progress to pharmacological intervention and surgical studies to assess the clinical benefits of such therapies in driving symptom improvement or reducing disease progression

    Suprathreshold auditory processes in listeners with normal audiograms but extended high-frequency hearing loss

    Get PDF
    Hearing loss in the extended high-frequency (EHF) range (\u3e8 kHz) is widespread among young normal-hearing adults and could have perceptual consequences such as difficulty understanding speech in noise. However, it is unclear how EHF hearing loss might affect basic psychoacoustic processes. The hypothesis that EHF hearing loss is associated with poorer auditory resolution in the standard frequencies was tested. Temporal resolution was characterized by amplitude modulation detection thresholds (AMDTs), and spectral resolution was characterized by frequency change detection thresholds (FCDTs). AMDTs and FCDTs were measured in adults with or without EHF loss but with normal clinical audiograms. AMDTs were measured with 0.5- and 4-kHz carrier frequencies; similarly, FCDTs were measured for 0.5- and 4-kHz base frequencies. AMDTs were significantly higher with the 4 kHz than the 0.5 kHz carrier, but there was no significant effect of EHF loss. There was no significant effect of EHF loss on FCDTs at 0.5 kHz; however, FCDTs were significantly higher at 4 kHz for listeners with than without EHF loss. This suggests that some aspects of auditory resolution in the standard audiometric frequency range may be compromised in listeners with EHF hearing loss despite having a normal audiogram

    Clinical and biochemical footprints of inherited metabolic diseases. IX. Metabolic ear disease

    Full text link
    Damages to the ear are very diverse and can depend on the type of inherited metabolic diseases (IMD). Indeed, IMDs can affect all parts of the auditory system, from the outer ear to the central auditory process. We have identified 219 IMDs associated with various types of ear involvement which we classified into five groups according to the lesion site of the auditory system: congenital external ear abnormalities, acquired external ear abnormalities, middle ear involvement, inner ear or retrocochlear involvement, and unspecified hearing loss. This represents the ninth issue in a series of educational summaries providing a comprehensive and updated list of metabolic differential diagnoses according to system involvement. Keywords: Conductive hearing loss; Ear; External ear; Hearing loss; Inborn errors of metabolism; Inherited metabolic diseases; Sensorineural hearing loss; Tinnitus

    Comparison of Two Music Training Approaches on Music and Speech Perception in Cochlear Implant Users

    Get PDF
    In normal-hearing (NH) adults, long-term music training may benefit music and speech perception, even when listening to spectro-temporally degraded signals as experienced by cochlear implant (CI) users. In this study, we compared two different music training approaches in CI users and their effects on speech and music perception, as it remains unclear which approach to music training might be best. The approaches differed in terms of music exercises and social interaction. For the pitch/timbre group, melodic contour identification (MCI) training was performed using computer software. For the music therapy group, training involved face-to-face group exercises (rhythm perception, musical speech perception, music perception, singing, vocal emotion identification, and music improvisation). For the control group, training involved group nonmusic activities (e.g., writing, cooking, and woodworking). Training consisted of weekly 2-hr sessions over a 6-week period. Speech intelligibility in quiet and noise, vocal emotion identification, MCI, and quality of life (QoL) were measured before and after training. The different training approaches appeared to offer different benefits for music and speech perception. Training effects were observed within-domain (better MCI performance for the pitch/timbre group), with little cross-domain transfer of music training (emotion identification significantly improved for the music therapy group). While training had no significant effect on QoL, the music therapy group reported better perceptual skills across training sessions. These results suggest that more extensive and intensive training approaches that combine pitch training with the social aspects of music therapy may further benefit CI users

    Computer-Aided Learning in Artificial Neural Networks

    Get PDF
    This paper describes the development and evaluation of a Computer-Aided Learning (CAL) package for a graduate course in artificial neural networks. The package has been evaluated over a period of two academic years both as an educational supplement to a conventional lecture course and also as a completely self-sufficient remotely-taught course. The course is accessed via the World-Wide-Web (WWW). The course features Java applets for animation/demonstration purposes as well as employing the MATLAB(TM) computational engine for interactive examples and assignemtns. In an effort to provide a classroom-like environment, an interactive discussion forum is provided, along with weekly lecture summaries from the conventional lecture course. Automatically marked question pools are available for self-assessment

    Computer-Aided Learning in Artificial Neural Networks

    Get PDF
    This paper describes the development and evaluation of a Computer-Aided Learning (CAL) package for a graduate course in artificial neural networks. The package has been evaluated over a period of two academic years both as an educational supplement to a conventional lecture course and also as a completely self-sufficient remotely-taught course. The course is accessed via the World-Wide-Web (WWW). The course features Java applets for animation/demonstration purposes as well as employing the MATLAB(TM) computational engine for interactive examples and assignemtns. In an effort to provide a classroom-like environment, an interactive discussion forum is provided, along with weekly lecture summaries from the conventional lecture course. Automatically marked question pools are available for self-assessment
    • …
    corecore